Building a Faster R-CNN Model: From PyTorch to Dataloop ๐
Ever wanted to bring the power of PyTorch's Faster R-CNN to Dataloop? Let's build something awesome together! We'll transform a standard PyTorch model into a Dataloop-ready powerhouse.
Before We Start ๐ฏ
Let's get your workspace ready:
What You'll Need ๐งฐ
- ๐ A Dataloop account (your gateway to AI awesomeness)
- ๐ Python installed on your machine
- ๐ฆ Dataloop SDK (
pip install dtlpy
) - ๐ฅ TorchVision (
pip install torchvision
)
๐ก Quick Links:
Test Drive: Running Locally ๐๏ธ
Let's first test our model in its natural habitat. Create a file called test_model.py
:
from torchvision.io.image import read_image
from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
from torchvision.utils import draw_bounding_boxes
from torchvision.transforms.functional import to_pil_image
def test_local_model(image_path):
"""Test Faster R-CNN locally"""
print("๐ Loading image and model...")
# Load and prep the image
img = read_image(image_path)
# Get the best available weights
weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn_v2(
weights=weights,
box_score_thresh=0.9
)
model.eval()
# Prepare the image
preprocess = weights.transforms()
batch = [preprocess(img)]
# Run prediction
print("๐ฏ Running prediction...")
prediction = model(batch)[0]
# Visualize results
labels = [weights.meta["categories"][i] for i in prediction["labels"]]
box = draw_bounding_boxes(
img,
boxes=prediction["boxes"],
labels=labels,
colors="red",
width=4,
font_size=30
)
# Show the result
im = to_pil_image(box.detach())
im.show()
print("โจ Done! Check out the visualized predictions!")
# Try it out!
test_local_model("/path/to/your/image.jpg")
๐ Pro Tip: You can grab a test image here
Building the Dataloop Bridge: Model Adapter ๐
Now let's create our model adapter - the magical translator between PyTorch and Dataloop. Create adapter.py
:
import dtlpy as dl
from torchvision.io.image import read_image
from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
class FasterRCNNAdapter(dl.BaseModelAdapter):
def load(self, local_path, **kwargs):
"""Load the model with its super-powers"""
print('๐ Initializing Faster R-CNN...')
# Get the best weights
self.weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
self.model = fasterrcnn_resnet50_fpn_v2(
weights=self.weights,
box_score_thresh=0.9
)
self.model.eval()
# Setup preprocessing
self.preprocess = self.weights.transforms()
print('โ
Model loaded and ready!')
def prepare_item_func(self, item: dl.Item):
"""Prepare items for the model"""
print(f'๐ Preparing item: {item.name}')
img = read_image(item.download())
return self.preprocess(img)
def predict(self, batch, **kwargs):
"""Run predictions and return Dataloop annotations"""
print(f'๐ฏ Running prediction on batch of {len(batch)} items')
predictions = self.model(batch)
batch_annotations = []
for pred in predictions:
collection = dl.AnnotationCollection()
# Convert predictions to Dataloop annotations
for box, label, score in zip(
pred["boxes"],
pred["labels"],
pred["scores"]
):
collection.add(
annotation_definition=dl.Box(
left=box[0],
top=box[1],
right=box[2],
bottom=box[3],
label=self.model_entity.id_to_label_map[label]
),
model_info={
'name': self.model_entity.name,
'model_id': self.model_entity.id,
'confidence': score
}
)
batch_annotations.append(collection)
print('โจ Predictions complete!')
return batch_annotations
Launching on Dataloop ๐
1. Create Your Model DPK ๐ฆ
First, create a dataloop.json
manifest file:
{
"name": "faster-rcnn",
"displayName": "Faster R-CNN Object Detector",
"version": "1.0.0",
"scope": "public",
"description": "State-of-the-art object detection using Faster R-CNN",
"components": {
"computeConfigs": [
{
"name": "default-config",
"runtime": {
"podType": "regular-xs",
"concurrency": 1,
"autoscaler": {
"type": "rabbitmq",
"minReplicas": 0,
"maxReplicas": 2,
"queueLength": 100
}
}
}
],
"modules": [
{
"name": "rcnn-module",
"entryPoint": "adapter.py",
"className": "FasterRCNNAdapter",
"computeConfig": "default-config"
}
],
"models": [
{
"name": "faster-rcnn",
"moduleName": "rcnn-module",
"configuration": {
"confidence_threshold": 0.9,
"batch_size": 4
}
}
]
}
}
2. Deploy Your Model ๐
import dtlpy as dl
# Login to Dataloop
dl.login()
# Get your project
project = dl.projects.get("Your-Awesome-Project")
# Publish your DPK
print("๐ฆ Publishing DPK...")
dpk = project.dpks.publish()
# Install the app
print("๐ง Installing app...")
project.apps.install(dpk=dpk)
# Get and deploy your model
print("๐ Deploying model...")
model = project.models.get("faster-rcnn")
model.deploy()
print("โจ Your model is ready to rock!")
3. Test Your Model ๐งช
# Upload a test image
item = dataset.items.upload(
'path/to/test/image.jpg'
)
# Run prediction
execution = model.predict(item_ids=[item.id])
execution.wait()
# Check results
print(f"๐ฏ Prediction status: {execution.status[-1]['status']}")
item.open_in_web()
Pro Tips for Success ๐
Performance Optimization โก
- Use GPU pods for faster inference
- Batch your predictions when possible
- Monitor memory usage
Error Handling ๐ก๏ธ
- Add proper logging
- Handle edge cases
- Validate inputs
Best Practices ๐
- Version your model artifacts
- Document configuration options
- Test thoroughly before deployment
Need Help? ๐ค
- ๐ Check the full example on GitHub
- ๐ Read our Model Management docs
Happy modeling! May your predictions be accurate and your deployments smooth! ๐