Before You Begin: Essential Setup 🛠️
Welcome to your Dataloop journey! Let's get your environment perfectly set up for success.
Useful Resources 📚
Before diving into the setup, here are some helpful resources:
- 🔍 Dataloop Python SDK Cheat Sheet - Quick reference for SDK code examples
- 💻 Recommended Specifications - System requirements, supported browsers, and file formats
- 🔑 Sign Up - Create your free Dataloop account
- 📂 Onboarding Files - Access all onboarding exercise files
- 📚 In-depth SDK Documentation - Detailed SDK reference
System Requirements 💻
Hardware Requirements
- CPU: 2+ cores recommended
- RAM: 4GB minimum, 8GB+ recommended
- Storage: 1GB+ free space for SDK and dependencies
- Internet: Stable connection required
Software Prerequisites
- Operating System:
- Windows 10/11
- macOS 10.14+
- Ubuntu 18.04+ or other modern Linux distributions
- Python: Version 3.6 or higher
- pip: Latest version recommended
Python Environment Setup 🐍
1. Installing Python
# Check if Python is installed
python --version # or python3 --version
# If not installed, download from:
# https://www.python.org/downloads/
💡 Pro Tip: Always check "Add Python to PATH" during Windows installation!
2. Setting Up a Virtual Environment
# Create a new virtual environment
python -m venv dataloop-env
# Activate the environment
# On Windows:
dataloop-env\Scripts\activate
# On macOS/Linux:
source dataloop-env/bin/activate
SDK Installation Guide 📦
1. Basic Installation
# Install the Dataloop SDK
pip install dtlpy
# Verify installation
pip show dtlpy
2. Validation
# Test your installation
import dtlpy as dl
print(dl.__version__)
Environment Configuration ⚙️
1. Setting Up Environment Variables
# Windows
set DTLPY_API_KEY=your-api-key
# Linux/macOS
export DTLPY_API_KEY=your-api-key
2. Configuration File Setup
# Create a default configuration
dl.configure()
# Or specify custom settings
dl.configure(api_key='your-api-key',
environment='prod')
Best Practices & Tips 👑
1. Environment Management
- Always use virtual environments
- Keep dependencies updated
- Document your environment setup
2. Security Best Practices
# DON'T: Hardcode credentials
api_key = "your-api-key" # ❌
# DO: Use environment variables
import os
api_key = os.environ.get('DTLPY_API_KEY') # ✅
3. Installation Troubleshooting
Common issues and solutions:
SSL Certificate Errors
# Temporary fix pip install --trusted-host pypi.org --trusted-host files.pythonhosted.org dtlpy
Dependency Conflicts
# Clean installation pip uninstall dtlpy pip cache purge pip install dtlpy
Version Mismatch
# Force specific version pip install dtlpy==x.y.z
Validation Checklist ✅
Before proceeding, ensure:
- Python 3.8+ is installed
- Virtual environment is created and activated
- Dataloop SDK is installed
- Installation is verified
- Environment variables are set
- Test import is successful
Next Steps 🎯
Once your environment is ready:
- Configure your credentials
- Create your first project
- Start exploring Dataloop's features
🔍 Need Help? Check our troubleshooting guide
Pro Tips 💡
IDE Integration
- Use VS Code or PyCharm for better development experience
- Install Python extensions for code completion
Development Workflow
import dtlpy as dl # Enable debug logging dl.verbose.logging_level = "DEBUG"
Resource Management
# Always clean up resources try: # Your code here finally: dl.logout()
Ready to start your Dataloop journey? Let's move on to authentication and project setup! 🚀